機器或能替代人類分揀黃瓜 人工智能真的無所不能么?
數十年來,Makoto Koike的母親一直都使用手工方式分揀黃瓜。如今,Makoto Koike正試圖“訓練”出一臺機器來替代。Makoto Koike是一名工程師,長期以來,他一直愛好修補電...
數十年來,Makoto Koike的母親一直都使用手工方式分揀黃瓜。如今,Makoto Koike正試圖“訓練”出一臺機器來替代。
Makoto Koike是一名工程師,長期以來,他一直愛好修補電子配件和機器;可以說,他不是天生就喜歡自然戶外生活的人。2014年,在Makoto Koike 33歲的時候,他離開了他長期工作和生活的城市,搬到了環境優美的靜岡縣,幫助其父母經營黃瓜農場。“我認為我已經到了一定的年紀了,” Makoto Koike說道。“我想要離我的家和家人更近一些。”
Makoto Koike一家在湖西市種植黃瓜已將近五十年,他們種植了三個小型溫室的黃瓜。Makoto Koike的父親負責播種種子;Makoto Koike負責指導監督他們的種植;Makoto Koike的母親則是負責對收成的果實進行分類。在日本,最后一項工作尤其重要,因為農作物有不同的分類標準,同一個品種的黃瓜的分類就達了9種之多,這需要收割者對其農產品有著非常好的識別能力,手里剛摘了一根黃瓜,你得仔細觀察它的長短、粗細、顏色、紋理、是否有小刮痕、彎的還是直的、刺多不多......要跟9類標準對應,看它屬于哪一等級,這并不是一個容易學的工作。Makoto Koike一家往往會把那些比較好的、筆直且厚度均勻的黃瓜給批發商,而剩余那些不太完美的黃瓜則以半價出售。一直以來,Makoto Koike的母親都是一個接一個地分揀這些蔬菜,分門別類地將它們放進不同的箱子里。雖然她每個黃瓜只花了她半秒鐘,但這項工作占據了她大部分的工作時間;某些時候,她甚至在某幾天內一天就處理了四千多根黃瓜。
Makoto Koike認為,給黃瓜分類不應該是瓜農的主要的工作,瓜農最重要的任務應該是專注于種植出美味的黃瓜。所以他決定,要把分類的工作交給機器,但是市面上的黃瓜分類器要么性能差、要么太貴,不適合小農場。在去年春天,Makoto Koike開始開發一種新的分撿黃瓜的方法,他建了一個黃瓜分揀機,使用了谷歌在2015年向公眾發布的TensorFlow深度學習軟件框架。而Makoto Koike的靈感來源,部分是由他閱讀的一篇關于AlphaGo的文章,AlphaGo是有史以來第一個擊敗人類圍棋大師的計算機程序。在AlphaGo案例中,其從現實圍棋比賽中提取了三千萬張圖片,用于幫助確定哪種行動步驟最有效。Makoto Koike也希望能創造一個類似的策略,幫助其對黃瓜進行整理分類。
而包括深入學習的高級人工智能技術是屬于專業研究人員和軟件公司的領域。盡管如此,最近也有一些科技界巨頭,包括谷歌、Facebook、微軟、亞馬遜、百度以及各大學都已經發布了免費的開源版本的工具,使像得Makoto Koike這樣的非專業編程人員也可以對其進行訪問。
在他的項目中使用了樹莓派3作為主控制器,又建立了一個自定義的照片拍攝站,這使得他能夠從三個不同角度拍攝每一根黃瓜。接著,為了分析這些圖像,把它們都傳到了TensorFlow平臺上,起初在一個小型的神經網絡上運行,以判斷是否是黃瓜,之后,已經被判定為黃瓜的照片接著傳輸到一個更大的基于Linux服務器的神經網絡,來對黃瓜按照不同的特質進行分類。不過,在他能夠真正使用人工智能技術分撿黃瓜之前,Makoto Koike必須先對這套系統進行“訓練”,為了訓練這個模型,Makoto Koike花了3個月的時間給它“喂”了7000張黃瓜照片,這些照片都是由Makoto Koike的媽媽分類貼上的標簽。最后,他還建立了一個自動傳送帶系統,將每根黃瓜從照片拍攝站傳送至程序指定的箱子。
Makoto Koike在去年完成了對這套人工智能系統的開發,而且從某種程度上來說,它確實奏效了。不過,它對黃瓜的分類準確率還只能達到百分之七十,這樣的準確率太低,他們還必須進行人工檢查。而且,目前這些蔬菜還需要一個接一個的放在照片拍攝站上,也就是說,Makoto Koike的母親還沒有被“完全替代”。
Makoto Koike認為,他所創造的系統就正是一個令人鼓舞的證明,而他目前正在研究新版本的機器,他希望新機器能夠一次分析多個黃瓜。他還計劃建立一個溫和的輸送系統,以保護蔬菜皮膚上脆弱的皮刺,因為黃瓜的皮刺往往被認為是新鮮的跡象。他期望在幾年內使其人工智能分揀機的工作效率能達到與母親一樣準確,讓她能有時間做別的事情。不管怎樣,Makoto Koike說他已經回到了湖西市。他說,“我的計劃是,今生就做個農民。”到那個時候,農民這份工作可能就看起來很不一樣了。
人工智能在農業領域的研發及應用早在本世紀出就已經開始,這其中既有耕作、播種和采摘等智能機器人,也有智能探測土壤、探測病蟲害、氣候災難預警等智能識別系統,還有在家畜養殖業中使用的禽畜智能穿戴產品。
不過,人工智能在農業領域的應用才剛剛開始,面臨的挑戰比其他任何行業都要大,因為農業涉及的不可知因素太多了。地理位置、周圍環境、氣候水土、病蟲害、生物多樣性、復雜的微生物環境等等,這些因素都在影響著農作生產。你在一個特定環境中測試成功的算法,換一個環境未必就有用了。
我們現階段看到的一些人工智能成功應用的例子大都是在特定的地理環境或者特定的種植養殖模式。當外界環境變換后,如何挑戰算法和模型是這些人工智能公司面臨的挑戰,這需要來自行業間以及農學家之間更多的協作。
波士頓動力機器人跪了!搬箱子不成反摔倒
波士頓動力稍有動靜就會引發轟動,這次也不例外。一段最新流出的視頻顯示了波士頓動力的Atlas機器人試著搬箱子然后放到架子上——嘗試很久未果,最終無情倒下。此前...
人工智能機器人搶小編工作,還讓不讓人活?
過去10年,英國本地乃至全球的新聞行業一直處于衰落狀態。隨著讀者轉向互聯網和社交媒體獲取新聞,越來越少的紙媒受眾讓廣告商現在把錢花在別處。這導致了當地新聞記者的失業問...
機器人三定律有瑕疵,授權理念才能保護人類?
正如可以保護你、幫助你、支持你一樣,機器人也可能會傷害你。如何構建一套放之四海皆準的機器人行為原則,是科技工作者不得不面對的技術和倫理雙重難題。赫特福德大學的人工智...
機器人和人類將無法區分 "恐怖谷理論"要成真了?
在科幻小說和電影中,除了部分將機器人描繪成恐怖的殺人狂魔、試圖統治地球,大多數情況下機器人是人類的朋友、同事、仆人,甚至是情人。現如今,性愛機器人已經存在,而且越來越多的...
打過球的機器人來了 網紅機器人空降啤酒節
今年青島國際啤酒節繼續設立機器人大篷,更加注重互動、應用、體驗,打造一個與眾不同的科普教育場所。這其中不乏機器人明星,連跟總理握過手、打過球的機器人也來了。
...